Home
Bio4Comp logo
Researcher working in a Clean Room

PARALLEL NETWORK-BASED BIOCOMPUTATION

Today’s supercomputers are limited mainly by two obstacles: First, they use vast amounts of electric power – so much that the development of more powerful computers is hampered primarily by limitations in the ability to cool the processors. Second, they are not very good at doing two things at the same time. This makes them particularly bad at solving certain problems such as the design of error-free computer chips and software, calculating efficient resource use in industrial processes, or predicting protein folding.

Bio4Comp, an EU-funded research project focuses on pushing the limit for what size of such problems can be practically solved. We call our approach "network-based biocomputation": The idea is that biomolecular machines, each only a few billionth of a meter (nanometers) in size, can solve problems by moving through a nanofabricated network of channels designed to represent a mathematical algorithm; an approach we termed “network-based biocomputation”. Whenever the biomolecules reach a junction in the network, they either add a number to the sum they are calculating or leave it out. That way, each biomolecule acts as a tiny computer with processor and memory. While an individual biomolecule is much slower than a current computer, they are self-assembling so that they can be used in large numbers, quickly adding up their computing power. An example of how this works is shown in the video below. Members of the Bio4Comp team have recently demonstrated in a publication in PNAS, that this approach works not only in theory but also in practice.

Bio4Comp has two main goals: (i) We aim to develop the technology required to scale up network-based biocomputers to a point at which they are able to compete with other alternative computing approaches such as DNA computing and quantum computing. (ii) In the process, we aim to attract a larger scientific and economic community that will focus on developing the technology into a viable alternative computing approach.

FUTURE AND EMERGING TECHNOLOGIES

 

Bio4Comp is a research project funded by the Horizon 2020 Research and Innovation Framework Programme of the European Union (grant agreement 732482). The project has received 6.1 million euros from the Future & Emerging Technologies (FET) programme to run the highly interdisciplinary action touching mathematics, biology, engineering, and computation. The collaborative project has an expected duration of five years (2017-2021) and aims for the exploitation of the motion created by molecular motors proteins in a unique manner to solve mathematical problems.

THE INTERNATIONAL TEAM OF RESEARCHERS

 

The consortium consists of six partners from Sweden, Germany, the U.K. and Israel. This international team of researchers and technologists is lead by Prof. Heiner Linke, Director of the Nano Science Center at Lund University (Sweden). The partners are TU Dresden (Germany), Prof. Stefan Diez group; Linnaeus University in Kalmar (Sweden), Prof Alf Månsson group; Molecular Sense Ltd. (UK), Dr. Dan Nicolau, CEO; Bar-Ilan University (Israel), Dr. Hillel Kugler group; and two Institutes (Fraunhofer ISC and Fraunhofer ENAS) of the Fraunhofer- Gesellschaft (Germany).

Molecular Sense

Fraunhofer Gesellschaft Logo
Linnaeus University Logo
Lund University Logo
TU Dresden Logo
Bar-Ilan University Logo
Molecular Sense Logo
European Union Flag

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No 732482.

Call: FETPROACT-2016; Type of Action: RIA (Research and Innovation Action)

Page Manager: Gerda Rentschler, e-mail